Hierarchical strategy for full waveform inversion in the frequency domain

R. Brossier¹, C. Castellanos², B. Dupuy¹, V. Etienne², Y. Gholami², G. Hu¹, S. Operto², D. Pageot², V. Prieux², A. Ribodetti², A. Roques¹ and J.Virieux¹,³

1 ISTerre, Université Joseph Fourier, CNRS, Grenoble France
2 Geoazur - CNRS - UNSA - IRD - OCA, France
3 Speaker. Alphabetic order of authors

Abstract

Full waveform inversion (FWI) of seismic traces recorded at the free surface allows the reconstruction of the physical parameters structure on the underlying medium. Our two main objectives are the reconstruction of multiple classes of parameters on one side and the formulation of both the acoustic and elastic FWI for 3D geometries. A quasi-Newtonian method with a preconditioned L-BFGS algorithm provides scaled gradients of the misfit function for each class of parameter. For onshore applications where body waves and surface waves are jointly inverted, P- and S-wave velocities (V_p and V_S) must be reconstructed simultaneously using a hierarchical inversion algorithm with two nested levels of data preconditioning. The first one concerns the frequency sampling from low to high frequencies during the inversion procedure. The second one performs a data preconditioning by an exponential decay after the first arrival time. Simultaneous inversion of multiple frequencies rather than successive inversions of single frequencies significantly increases the S/N ratio of the models. For offshore applications where V_S can have a minor footprint in the data, a hierarchical approach which first reconstructs V_p in the acoustic approximation from the hydrophone component followed by the joint reconstruction of V_p and V_S from the geophone components can be the approach of choice. Among all the possible minimization criteria, we found that the L_1 norm provides the most robust and easy-to-tune criterion as expected for this norm. In particular, successfull reconstruction of V_p and V_S on a realistic synthetic offshore case study is possible when white noise with outliers has been added to the data.

The feasibility of 3D FWI is highly dependent on the efficiency of the seismic modelling. Frequency-domain modelling based on direct solver allows one to tackle small-scale problems involving few millions of unknowns at low frequencies. If the seismic modelling engine embeds expensive source-dependent tasks, source encoding can be used to mitigate the computational burden of multiple-source modelling. However, the source encoding is very sensitive to noise in the framework of efficient frequency-domain FWI where a limited number of frequencies is inverted sequentially. Time-domain modelling for the estimation of harmonic components of the solution is an alternative of choice even for 3D frequency-domain FWI because it allows one to extract an arbitrary number of frequencies at a minimum extra cost, a procedure useful when multiple frequencies are inverted together.

Introduction

With the tremendous increase of the computational power provided by large-scale distributed-memory platforms and the development of dense 3D multi-component wide-aperture/wide-azimuth surveys, full waveform inversion has become a re-emerging technic to build high-resolution velocity models of the subsurface (Virieux and Operto (2009) for a review). Full waveform inversion is a (local) optimization problem, the aim of which is the minimization of the misfit between the recorded and modeled seismic wavefields (Tarantola, 1987). The seismic wavefield is modeled by the full resolution of the two-way wave equation and the inverse problem is solved by local optimization approach, where the gradient of the misfit function can be efficiently computed by the adjoint-state method (Plessix, 2006). While full waveform inversion has been originally developed in the time domain in the eighties, Pratt and co-workers have developed efficient inversion technique in the frequency domain for wide-aperture acquisitions such as cross-hole or dense refraction experiments (Pratt et al., 1998): taking advantage of the redundant control of frequency and aperture angle on the wavenumber coverage in the model space, the inversion can be theoretically limited to few discrete frequencies (Sirgue and Pratt, 2004). These frequencies can be inverted sequentially to design a hierarchical multiscale imaging which is useful to mitigate the non linearity of the inversion. The 2D forward problem for multiple sources is efficiently performed in the frequency domain using direct solvers to solve the linear system resulting from the discretization of the time-harmonic wave equation (Marfurt, 1984). Straightforward implementation of attenuation in frequency-domain seismic modelling relies on the use of complex velocities. Since the pioneering work of G. Pratt and co-workers, several promising applications of 2D acoustic frequency-domain FWI have been published, where only the dominant P-wave velocity (V_p) parameter is reconstructed (e.g., Ravaut et al., 2004; Gao et al.,...
2006; Jaiswal et al., 2009). Reconstruction of two velocity parameters has been shown successful on synthetic data (Brossier et al., 2009b). Today, challenges for full waveform inversion are (a) the reconstruction of multiple classes of parameters with contrasted signatures in the data, such as the P wave and S wave velocities on real data, (b) the reconstruction of less contrained parameters as density, attenuation and anisotropy aside velocities and the extension to 3D where the computational burden of multiple-source modelling is a key issue. The aim of the SEISCOPE project has been to tackle these challenges since 2006. The main results obtained so far are reviewed in the following.

Multiparameter full waveform inversion

Most of recent applications have been performed in the acoustic approximation, where only the P-wave velocity is reconstructed. The acoustic approximation leads to inaccuracies in the amplitude modelling, the impact of which can be more or less significant depending on the medium properties (Barnes and Charara, 2009). The amplitude errors can be a dominant factor which prevent reliable inversion at high frequencies. Since 2006, we have developed a 2D massively parallel FWI code for imaging visco-elastic media where \(V_P, V_S \), the density and the attenuation factors \(\rho \) and \(\zeta \) can be reconstructed (Brossier, 2009b). This code has been recently extended to vertically transversally isotropic (VTI) media by Ghoulami et al. (2010) while Operto et al. (2009) discussed the accuracy of the acoustic seismic modelling in TTI media. So far, we mainly focused on the joint reconstruction of \(V_P \) and \(V_S \) by full waveform inversion.

Preconditioned L-BFGS optimization: The inversion relies on a preconditioned L-BFGS quasi-Newton algorithm that allows one to compute without significant extra computational cost an approximation of \(H \) where \(H \) is the inverse of the Hessian and \(G \) is the gradient of the misfit function (Nocedal, 1980). In the framework of multiparameter reconstruction, an approximate Hessian allows one to scale the gradients associated with each parameter class before the estimation of the step length. The L-BFGS algorithm recursively provides an approximation of \(H \) from the gradients and the models of previous iterations by performing inner products of vectors. If different classes of parameters with different order of size are involved in the inversion, estimation of those inner products can be biased towards the dominant parameters. Scaling properly the L-BFGS optimization goes through a normalisation of the different parameter classes before the estimation of \(H \) (Brossier, 2010b).

Elastic full waveform inversion: onshore application: We first applied elastic full waveform inversion to a realistic synthetic onshore case study, that corresponds to a dip section of the 3D acoustic EAGE/SEG overthrust model (Brossier et al., 2009b). An elastic model was built by using a constant Poisson ratio of 0.24. The acquisition design is a wide-aperture acquisition with a maximum offset of 20 km. The challenge for this application is the joint inversion of body waves and surface waves in presence of a heterogeneous weathered layer in the near surface. We have concluded that successful reconstruction of both \(V_P \) and \(V_S \) models requires to introduce two levels of data preconditioning in the inversion implemented into two nested loops in the algorithm. The first level of data preconditioning proceeds as usually over increasing frequencies while the second one proceeds over decreasing time damps to introduce progressively in the inversion shorter-aperture and more complex late-arriving phases such as surface waves and PS-converted waves. Successive inversions of overlapping frequency groups rather than successive inversions of single frequencies is another key factor which contributed to significantly improve the S/N ratio of the reconstructed models. Two important conclusions of this application are that \(V_P \) and \(V_S \) must be reconstructed simultaneously because of the strong footprint of surface waves in the seismic wavefield and that \(V_S \) can require a more accurate starting model than \(V_P \) because of the higher-resolution power of the low shear-wave velocities.

Elastic full waveform inversion: offshore application: Second, we have imaged the offshore Valhall model by elastic full waveform inversion from a synthetic 4-C OBC survey with a maximum offset of 16 km (Brossier et al., 2009a). The Valhall model is mainly characterized by a soft sea bed which prevents a large amount of PS conversions and the presence of low-velocity gas layers above the reservoir level. A first conclusion is that acoustic inversion of the hydrophone component of the elastic data provides a reliable \(V_P \) model. This \(V_P \) model can be used as a starting model to perform the joint reconstruction of \(V_P \) and \(V_S \) from the geophone components. While the onshore case study required the joint reconstruction of \(V_P \) and \(V_S \), offshore applications where \(V_S \) can have a minor footprint in the seismic wavefield, can require a hierarchical approach where the dominant \(V_P \) parameter is first reconstructed followed by the joint reconstruction of \(V_P \) and \(V_S \).

Sensitivity of full waveform inversion to noise: The least-squares \(L_2 \) norm remains the most popular optimization criterion, although its sensitivity to large errors in the data. We (re-)investigated alternative functionals for full waveform inversion such as the least-absolute-value \(L_1 \) norm, the Huber norm and an hybrid \(L_1-L_2 \) criterion (Brossier et al., 2010a). Our conclusion is that the \(L_1 \) norm provides the most robust and easy-to-tune criterion. We applied the \(L_1 \) norm in the framework of efficient frequency-domain inversion (i.e., waveform inversion applied to strongly decimated data) to the overthrust and Valhall case studies where random white noise is added to the data. In the overthrust experiment, the \(L_1 \) norm outperforms \(L_2 \) norm when the same number of frequencies is used in the inversion. If the number of inverted frequencies is increased when the \(L_2 \) norm is used, the \(L_2 \) norm can provide results as good as the \(L_1 \) norm at the expense of the computational cost. In the Valhall case, the \(L_2 \)-norm inversion failed to successfully reconstruct the \(V_S \) model for data with white noise, while the \(L_1 \) norm provided satisfying \(V_P \) and \(V_S \) models even in presence of outliers.

Three-dimensional full waveform inversion

Three-dimensional acoustic full waveform inversion is today feasible and promising applications to real data case studies at low frequencies (< 7 Hz) were recently published (Sirgue et al., 2009; Plessix, 2009). Because the inversion has been limited to rather low frequencies, full waveform inversion is viewed as a tool to build high-resolution velocity models than can be used as background...
Seismic modelling: The computational cost of 3D full waveform inversion is mainly controlled by the computational efficiency of the seismic modelling. Several modelling in the time domain and in the frequency domain have been proposed to perform inversion in the frequency domain (Virieux et al. 2009) for a review. The frequency-domain approach based on direct solver, widely used in 2D, has been extended to 3D by Operto et al. (2007); Brossier (2010c). Although the direct-solver approach is prohibitively memory and time expensive and poorly scalable for large-scale problems involving several tens of millions of unknowns, it allowed us to tackle efficiently problems of few millions of unknowns involving a large number of sources (Ben-Hadj-Ali et al., 2008). These problems are representative of petroleum targets at low frequencies (< 7 Hz). To tackle larger-scale problems, we have developed a domain decomposition algorithm for 3D acoustic wave modelling based on the substructuring Schur complement approach and hybrid direct-iterative solver (Sourbier et al., 2011). The hybrid strategy is more scalable and less memory demanding that the direct approach but the source-dependent task (i.e., iterative solve of the Schur complement system) is more computationally demanding than the direct-solver approach (i.e., substitution phase). This prompts us to assess source encoding to mitigate the computational cost of multi-source modelling in frequency-domain full waveform inversion.

Speeding up full waveform inversion by source stacking and phase encoding: Taking advantage of the linear relationship between the seismic wavefield and the source, sources of a seismic survey can be stacked before seismic modelling (Capdeville et al., 2005). The resulting seismic wavefield is the sum of the wavefields associated with each individual sources and the gradient of the misfit function built from the stacked wavefield is the gradient of the misfit function built from individual wavefields (i.e., the desired gradient) plus crosstalk terms resulting from the correlation between an incident wavefield associated with one source and the adjoint wavefield associated with another source. Random phase shifts can be applied to each individual sources before stack to mitigate the crosstalk noise while leaving unchanged the desired gradient (Romero et al., 2000; Krebs et al., 2009; Herrmann et al., 2009). We have assessed the source encoding technique in the framework of efficient frequency-domain FWI (Ben-Hadj-Ali et al., 2009), while the source encoding technique was applied to time-domain FWI by Krebs et al. (2009). We have highlighted the sensitivity of the method to noise when only few discrete frequencies are inverted sequentially and when all the sources are stacked in one single super-shot. An acceptable S/N ratio is obtained at the expense of the computational cost when frequency groups with sufficiently-fine frequency intervals are successively inverted rather than single frequencies. This can be an additional argument in favor of 3D time-domain modelling for frequency-domain FWI where an arbitrary large number of frequencies can be extracted at a minimum extra cost by discrete Fourier transform (Sirgue et al., 2008). Our conclusion is that the most efficient modelling strategy for 3D frequency-domain acoustic full waveform inversion might be the direct-solver approach for the inversion of the low frequencies (< 7 Hz) combined with time-domain modelling and source encoding to process higher frequencies. For 3D elastic wave modelling, the direct-solver approach is too computationally expensive and memory demanding for the moment (Etienne et al., 2008). In the prospect of 3D elastic full waveform inversion, we have developed a low-order hp-adaptive finite-element discontinuous Galerkin method in the time-space domain on unstructured tetrahedric meshes, which allows us to locally refine the mesh and tackle complex topographies and the fluid-solid interface in onshore and offshore environments, respectively (Etienne et al., 2010).

Conclusion and perspectives

Full waveform inversion has become a mature tool to build high-resolution velocity models in the acoustic approximation for prestack-depth migration in 3D geometries. The next challenges are the reconstruction of multiple classes of parameters such as V_p for detection of Poisson ratio anomalies in presence of gas and fluids, density and attenuation for a more accurate processing of amplitudes, anisotropy for processing of wide aperture/wide-azimuth data. Building reliable starting models for full waveform inversion remains an open question. Stereotomography based on the joint use of refraction and reflection traveltimes is one of our field of investigation for the reconstruction of these initial models.

Acknowledgments

We would like to thank BP, CGG-Veritas, ENI, EXXON-MOBIL, SHELL, STATOIL and TOTAL for the support of the SEISCOPE consortium (http://seiscope.oca.eu).

References

Hierarchical Strategy for Full Waveform Inversion

4

Twelfth International Congress of The Brazilian Geophysical Society